
Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 1

Building Real-Time and Embedded
Systems with Java

Charles-Antoine Gauthier
Software Engineering Group
Institute for Information Technology
National Research Council Canada
charles.gauthier@nrc.ca

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 2

The Speaker
• Researcher at the National Research Council of

Canada.
• Worked on the Harmony real-time

multiprocessor operating system.
• Currently working on developing a hard real-time

and embedded Java runtime environment using
Open Source software components.

• Consultant for the Canadian Department of
National Defence (DND) on real-time projects.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 3

The Tutorial
• Show why Java is promising technology for

implementing embedded and real-time systems.
• Not about programming with any specific

– Set of tools.
– Java specification.

• For intermediate audience.
– Some familiarity is assumed
– Refresher in part 1 and 2.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 4

The Tutorial
• Ask questions and provide feedback during the

presentation.
– Too slow or too fast.
– We already know all this stuff…

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 5

Outline
1 Review of embedded and real-time systems.
2 Review of Java technologies.
3 Java for embedded systems.
4 Java for real-time systems.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 6

1 - Review of embedded and real-time
systems.
1.1 Definition of embedded system.
1.2 Definition of real-time system.
1.3 The development of traditional embedded and

real-time systems.
1.4 Emerging trends in embedded and real-time

systems.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 7

1.1 - Definition Of Embedded System
• No standard or unambiguous definition.
• Embedded systems typically exhibit one or more

of these characteristics:
– Turnkey systems.
– Components of larger systems.
– Limited hardware resources.
– Developed on separate host systems.
– Implemented using wide variety of hardware.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 8

1.1.1 - Turnkey Systems
• Application auto-starts after boot.
• Fixed set of functions.

– Change in software is possible, but often not
by end users.
• May require reprogramming of ROM,

EPROM, EEPROM, Flash, etc.
• May require download of new software over

some communication link.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 9

1.1.2 - Components Of Larger Systems
• Embedded computer is often invisible: users

may be unaware that the system contains a
computer.

• Replacement for mechanical or electronic
devices in control or monitoring applications.

• Users typically interact with application-specific
interfaces, e.g. keypads, joysticks, knobs,
pedals, meters, etc.

• May be autonomous (no human users).

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 10

1.1.3 - Limited Hardware Resources
• Environment may limit the power, volume and

heat dissipation of a computer.
– Use slower processors for reduced power

consumption and heat dissipation.
• About 20% of leading clock rates.

– Limit memory and use high level of I/O device
integration allows to reduce volume.

• Must control resources consumed by software.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 11

1.1.4 - Developed On Host Systems
• Typically, software development for an

embedded system is done on a host system.
• Developed software executes on the embedded

or target computer.
• Host may be completely different system

(processor, OS, etc.) from the target.
– Use cross-development tools.

• Implies some means of transferring code from
the host to the target.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 12

1.1.5 - Target Variety Of Hardware
• Different processor families (architectures).
• Different processor family members.
• Modular I/O architecture.

– User supplied I/O devices.
• Underlying OS must

– Be configurable.
– Support user-supplied device drivers.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 13

1.1.6 - “Classic” Embedded Systems
• Fixed set of applications.

– Limited memory turnkey systems:
• Microwave oven.
• F-18 flight control computer.
• Wireless power meter reader.
• Music synthesizer keyboards (organs).

– Larger embedded systems:
• Air traffic monitoring system.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 14

1.1.7 - Emerging Embedded Systems
• Set of applications changeable by end users.

– Personal Digital Assistants (PDAs):
• Limited hardware resources.
• Cross development done on a host.
• Download to target over communication

link.
• Blurs distinction between embedded systems

and desktop systems (personal computers).

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 15

1.1.8 - Future Embedded Systems
• Leverage emerging technologies: wide-band

transceivers, Digital Signal Processors (DSP),
and high power processors.

• PDA of tomorrow will be convertible into a TV or
radio receiver, a cell phone, a Personal
Information Management (PIM) system, etc.
– Just requires appropriate software.
– Reduces the need for standardization: service

providers can use proprietary technologies.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 16

1.1.8 - Future Embedded Systems (cont.)
• Possible future device: PDA-like device issued to

military personnel.
– Device can receive cryptographic algorithms

over secure channels, not just crypto keys.
– Device can send and receive any data: voice,

text, images (maps), GPS signals, etc.
– Add Personal Area Networking and monitor

personnel in the field through body sensors.
• Some will be real-time systems.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 17

1.2 - Definition Of Real-Time System
• Two types of real-time systems in textbooks:

– Hard real-time systems.
– Soft real-time systems.

• Real-time systems are rarely that simple.
• Many real-time systems are also embedded

systems.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 18

1.2.1 - Hard Real-Time System (HRTS)
• Well defined term.
• A system that must respond to events in a timely

fashion.
– Response can’t be too early nor too late,

otherwise, system fails.
– Typically described in terms of deadlines.

• Response must occur no later than some
fixed time after its triggering event
occurred.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 19

1.2.2 - Soft Real-Time System (SRTS)
• Missing a deadline not a system failure.
• Just a vague statement about wanting results as

quickly as possible?

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 20

1.2.3 - Truth About Real-Time Systems
• Not every computation in a system is described

by a deadline.
• May be acceptable to miss some number of

consecutive or some ratio of deadlines.
– Becomes part of the specification of the

system.
– Failure to meet the spec is system failure.

• Some computations are not real-time at all.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 21

1.2.4 - Real-Time And Embedded Systems
• Many real-time systems are also embedded

systems according to definitions in this tutorial.
• But not all embedded systems are real-time

systems, at least not hard real-time systems.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 22

1.2.5 - Emerging Real-Time Systems
• Must execute dynamically loaded applications.
• These systems require new dynamic scheduling

algorithms.
– New applications bid for CPU and

communication channel bandwidth.
– Requires on-line schedulability analysis to

validate the mix of processes, threads and
tasks, and communication requirements.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 23

1.3 - Traditional Real-Time And Embedded
System Development
• Build as a multitasking system.
• Fix the set of tasks and do schedulability

analysis off-line to assign fixed priorities to the
tasks.

• Use a multitasking real-time OS (RTOS) to
support the design.

• Implement the tasks using conventional
development tools on the host system.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 24

1.3.1 - Multitasking Systems.
• Tasks are:

– Operations executed sequentially in response
to events.

– Concurrently running programs.
• Used in this tutorial in a generic sense:

– Process, thread or task.
• Reviewed in more detail in Appendix A.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 25

1.3.2 - Scheduling Analysis
• Rate Monotonic Analysis (RMA) can determine if

fixed set of tasks can meet their deadlines.
• RMA assigns fixed priorities to tasks to derive

feasible schedules based on:
– Arrival rates or arrival times of events.
– Execution time of responses.

• Actual sequencing of tasks determined by event
occurrences.

• RMA usually done off-line.
Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 26

1.3.3 Real-Time Operating System
• The RTOS provides:

– IPC mechanisms.
– Scheduling.
– Dispatcher and context switcher.
– Bounded execution times.
– Device driver infrastructure.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 27

1.3.3.1 - RTOS IPC Mechanisms
• Two IPC paradigms are used in most embedded

and real-time systems.
– Shared variable.
– Message passing.

• Other IPC mechanisms exist, such as
transactions and generative memory.
– Not generally supported by RTOSes.

• IPC reviewed in more detail in Appendix B.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 28

1.3.3.2 - RTOS Scheduling
• Priorities of tasks are fixed off-line using RMA.

– RTOS always executes the highest priority
task that is ready to run and that is at the head
of its ready-to-run queue.

• Scheduling in most RTOSes limited to
implementing priority inheritance and priority
ceiling protocols to avoid priority inversion.

• Both protocols require that priorities of certain
tasks be increased temporarily.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 29

1.3.3.2.1 - Priority Inversion
• Occurs when a high priority task is waiting for a

resource locked by a low priority task.
• Waiting time is potentially unbounded: medium

priority tasks may prevent the low priority task
from running and thus releasing the lock.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 30

1.3.3.2.2 - Priority Inheritance Protocol
• Temporarily boost the priority of a low priority

task that owns a resource to the priority level of
the highest priority task waiting for the resource.
– Allows the low priority task to execute

(assuming that the higher priority task would
have executed) and to release the lock.

• Prevents unbounded priority inversion delays on
single resources.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 31

1.3.3.2.3 - Priority Ceiling Protocol
• Assign a priority ceiling to each resource:

highest priority of all tasks that could use (lock)
the resource.

• Runtime environment tracks the highest priority
ceiling of all currently locked resources: current
system ceiling.

• Task can only lock a resource if its priority is
higher than the current system ceiling.

• Also apply Priority Inheritance Protocol.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 32

1.3.3.3 - RTOS Dispatcher And Context
Switcher
• Dispatcher selects a task for execution.

– Task must be ready to run, at the head of its
ready-to-run queue, and be the highest priority
task that is ready to run.

• Context switcher multiplexes the processor
between tasks.
– Saves the context of the previous task
– Restores the context of the dispatched task.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 33

1.3.3.4 - RTOS Bounded Execution Times
• RTOS system calls will become part of real-time

responses.
– Implies that system calls must have bounded,

known and documented execution times.
• Not all system calls need to have bounded

execution times.
– Is memory allocation a real-time operation?
– What about memory de-allocation?

• Extends to library calls.
Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 34

1.3.3.5 - RTOS Device Driver Infrastructure
• RTOS must be able to install user-supplied

device drivers.
• RTOS does low level interrupt management.

– Routes interrupts to user-supplied device
drivers (interrupt service routines or ISRs).

• RTOS must allow for communication and
synchronization between device drivers (ISRs)
and tasks.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 35

1.3.4 - Development Tools
• Standard compilers and linkers used on a host

system.
• Executable image is often statically linked with

the libraries and the RTOS.
• Some systems allow for dynamic linking.
• Executable images transferred to the target

system.
• Debugger is often split between the host and the

target.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 36

1.4 - Emerging Trends
• Push for code reuse.
• Push for standard APIs.
• Push for distributed systems.
• Push for more flexible systems.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 37

1.4.1 - Push For Code Reuse
• Possibility of reducing development costs and

development time, and of increasing quality, by
using existing (and extensively tested) software.

• Desire for code reuse is not new.
– Use of components for effective code reuse is.

• Need for real-time components.
– Guaranteed execution times.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 38

1.4.2 - Push For Standard APIs
• Help protect investment.

– Increases portability to rapidly changing
hardware.

• Current standards not effective.
– POSIX has limited functionality.
– Win32 not really for real-time.

• Linux and other open source projects may
succeed at standardizing more than kernel API.

• What about Java?

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 39

1.4.3 - Push For Distributed Systems
• Need more than TCP and UDP packets to build a

functional distributed system.
• Many APIs and technologies exist.

– Allows one to choose the best technology for
an application.

– May be necessary to interface to different
types of systems.

– May decrease portability and increase risk.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 40

1.4.4 - Push For More Flexible Systems
• Very few technologies exist to support field

updates of components of a real-time and
embedded system.

• Even fewer technologies are available to support
scheduling analysis in the target and to enforce
the schedules.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 41

2 - Overview Of Java
• An object-oriented programming language.
• A runtime environment: the Java Virtual Machine

(JVM).
• Collection of standard components: the Java

packages, class libraries, or APIs.
• Each one of these aspects is (almost)

independent.
• Multiple standards and implementations.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 42

2.1 - Programming Language
• Pure OO language.
• Classes are objects.
• Garbage collection for memory reclamation.
• Lack of pointer types.
• Support for multithreading.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 43

2.1.1 - Pure Object-Oriented Language
• General purpose pure OO language

– Not just for Web.
• Syntax reminiscent of C++, semantics closer to

Smalltalk.
• No “free” procedural functions as in C++; class

methods provide similar functionality.
• Classes acts like a package in Ada.
• Related classes form packages.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 44

2.1.2 - Classes Are Objects
• Classes are objects.

– Represented in memory at runtime.
– Can be exchanged between virtual machines.
– Can be queried.
– Can’t be synthesized on the fly though…

• This is different from C++ were all class
information is lost after compilation.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 45

2.1.3 - Garbage Collection (GC)
• Explicit and implicit memory allocation.

– Explicit calls to new().
– Implicit as objects are created and duplicated.

• Memory reclamation is automatic: Java requires
a garbage collector.
– But not always…

• Avoids memory leaks (forgetting to free blocks)
and freeing blocks still in use.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 46

2.1.4 - Lack Of Pointer Types
• Pointers hold addresses of objects (including

memory-mapped device registers).
• Not supported in Java.

– Would prevent the use of compacting garbage
collectors.

– Would re-introduce memory management
problems.

• Java uses references.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 47

2.1.5 - Built-in Multitasking
• Multithreading built into the language and the

runtime environment.
– But not always...

• Threads extend (inherit) from Thread class or
implement (inherit) from Runnable interface.

• Java threads may be implemented by OS threads
(native threads) or entirely in the Java runtime
environment.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 48

2.1.5 - Built-in Multitasking
•synchronize keyword used to implement

critical sections.
• Condition variables implement wait queues.
• Monitors implemented by

– Encapsulating shared data in objects or
classes.

– Implementing synchronization in access
methods.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 49

2.2 - Java Virtual Machine (JVM)
• JVM refers to:

– A processor architecture.
– A processor architecture and some core

system services.
• Class Loader.
• Garbage collector.

• JVM is a processor: it can support any
programming language.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 50

2.2.1 - The Processor Architecture
• The Java Virtual Machine defines a stack-based

processor architecture.
– Instruction set — bytecodes.

• Compact code because instructions are
short — many have no arguments.

– Programming model.
• May be implemented in software (virtual

machine) or in hardware.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 51

2.2.1.1 - Software JVMs
• Part of “write once, run anywhere”.

– “Simulate” Java processor on real machines.
• Bytecode interpreters.
• Native compilers.

– Just-In-Time compilers.
• Bytecodes to machine code on first use.

– Off-line compilers.
• Bytecode to machine code.
• Source code to machine code.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 52

2.2.1.1 - Software JVMs
• Numerous implementations (not including

compilers).
• Examples:

– JRE (JDK) from Sun Microsystems Inc.
– VisualAge Java from IBM (OTI).
– Kaffe from Transvirtual Inc.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 53

2.2.1.1 - Native Compilers
• Native Compiler List

– http://www.bearcave.com/software/java/comp_java.html

• Bytecode to native code compilers.
– Jove from Instantiations.

• http://www.instantiations.com/jove/product/thejovesystem.htm

– BulletTrain from NaturalBridge Inc.
• http://www.naturalbridge.com/bullettrain.html

– GNU gcj from RedHat (Cygnus)
• http://sources.redhat.com/

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 54

2.2.1.1 - Native Compilers
• Source code to native code compilers.

– GNU gcj from RedHat (Cygnus)
• http://sources.redhat.com/

– Jikes From IBM
• http://oss.software.ibm.com/developerworks/opensource/ji

kes/

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 55

2.2.1.2 - Hardware Implementations of JVM
• Build a processor to execute bytecodes directly.
• Not virtual machine then, but a real machine.
• Still require a lot of software from the Java

runtime environment.
• Examples:

– Xpresso form Zucotto Wireless Inc.
– IGNITE 1 from PTSC (Patriot Scientific Corp.)
– aJ-100 from Ajile Systems Inc.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 56

2.2.1.3 - JVM Execution Speed
• Perception that Java is slow.

– Interpreters necessarily slower than native
code.

– JIT compilers take time to execute.
– Off-line compilers can produce faster native

code with no runtime overheads.
• Loose ability to load bytecode dynamically.

• Java does more work at runtime than C or
Fortran.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 57

2.2.2 - Class Loader
• Loads and unloads classes at runtime.

– A form of dynamic linking different from
shared libraries or DLLs.
• DLLs loaded and linked when application is

loaded.
• Class loader allows for additions and upgrades

of code at runtime.
– At least in principle.

• Not supported by some implementations…
Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 58

2.2.3 - Support For Other Languages
• JVM can interface with machine code generated

by compilers for other programming languages.
– Use Java Native Interface (JNI).

• Allows calls to non-Java APIs.
– Other proprietary interfaces exist

• RedHat (Cygnus) C++ Native Interface (CNI).
• Transvirtual Kaffe Native Interface (KNI).

• Other languages can be compiled to bytecode
and executed in the JVM.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 59

2.2.3 - Support For Other Languages
• Issues with sharing data between Java and other

languages.
– Use of pointers (C/C++).
– Other environments not scanned by the

garbage collector.
• Two strategies:

– Use JNI to insulate different environments.
– Tightly integrate different environments.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 60

2.2.3 - Support For Other Languages
• 130 bytecode compilers/interpreters for

languages other than Java listed at:
– http://grunge.cs.tu-berlin.de/~tolk/vmlanguages.html

• Examples:
– Ada95 AppletMagic from AverStar.
– Ada95 ObjectAda from Aonix.
– Ada95 JGNAT from Ada Core Technologies.
– Smalltalk/JVM by Mission Software Inc.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 61

2.2.3 - Support For Other Languages
• gcj from Gnu (RedHat/Cygnus) is a native

compiler.
• Tightly integrated with C++.

– Share object model.
– Garbage collector scans C++ heap and stacks

for pointers to Java objects.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 62

2.3 - Standard APIs
• Java standards specify a number of Application

Programming Interfaces (APIs).
– Define classes (types, constants, variables,

and methods) to invoke services.
– Provided in class libraries or packages.

• Other part of “write once, run anywhere”.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 63

2.3 - Standard APIs
• APIs provide:

– Core services to implement the Java
language.

– Optional services.
– Interface to RTOS and middleware services.

• Some require native code to render the service
and may only exist for certain platforms.

• Others fully operational because implemented in
100% pure Java.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 64

2.3.1 - Core APIs
• Core classes: Object, Class, Reference, wrapper

types, Strings, and Throwable.
• Basic floating-point operations.
• Reflection support.
• Multithreading, access to OS process services,

dynamic class loading and security.
• Packages: java.lang, java.lang.reflect,
java.lang.ref

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 65

2.3.2 - Standard APIs For IPC

• Monitors (built into the language)
• Remote Method Invocation (RMI).
• JavaSpaces.
• CORBA ORB.
• RMI over IIOP.
• Java Transaction API.
• Java Transaction Service.
• Java Database Connectivity.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 66

2.3.3 - Other APIs Of Interest
• Java Foundation Classes.
• Java 3D.
• Java Advanced Imaging.
• Internationalization and Localization.
• Java Sound.
• Java Media Framework.
• Java Help.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 67

2.3.3 - Other APIs Of Interest
• Java Communication API.
• Java Native Interface.
• Java Security.
• Java Authentication And Authorization Service.

• Java Cryptography Extension.
• Java Secure Socket Extension
• Java Message Service.
• JavaMail.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 68

2.3.3 - Other APIs Of Interest
• InfoBus
• JavaBeans Activation Framework
• Servlets
• Java Naming And Directory Service
• JavaServer Pages

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 69

2.4 - Java Standards
• 4 major revision of the language and core APIs:

– Java 1.0, 1.1, 1.2 and 1.3
– Java 1.2 and 1.3 known as Java 2.

• 3 new “platforms” defined with Java 1.2:
– Java 2 Micro Edition (J2ME™)
– Java 2 Standard Edition (J2SE™)
– Java 2 Enterprise Edition (J2EE™)

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 70

2.4 - Java Standards
• Other standards:

– Java Card™
– Embedded Java
– Personal Java
– JINI
– Real-Time Java

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 71

2.4.1 - Java 2 Micro Edition (J2ME)
• Java from Sun Microsystems for small footprint

systems.
• 2 different “configurations” (JVM & core classes

implementations).
– Connected Limited Device Configuration

(CLDC) for systems with 160 to 512K of
memory

– “Redbook” J2SE VM for systems with > 512K
of memory.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 72

2.4.1.1 - CLDC
• CLDC is for systems with:

– Battery operation.
– Very constrained memory.
– Limited processing power 16/32-bit

RISC/CISC.
– Low bandwidth, high-latency network

connections.
• Implies the use of JVMs like KVM.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 73

2.4.1.2 - J2ME Profiles
• 5 different profiles (required APIs):

– TV set-top.
– Screen phone.
– Wireless (pagers and cell phones).
– Car.
– Personal digital assistants.

• Information is scant on the Sun web sites.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 74

2.4.2 - Java 2 Standard Edition (J2SE)
• Java for the desktop and web browsers.
• Corresponds to the published specification of

the JVM and class libraries.
• Sun allows third parties to implement this

standard using cleanroom techniques.
– Sun Microsystems claims all other standards

are proprietary and must be licensed.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 75

2.4.2 - Java 2 Standard Edition (J2SE)

lang

io

net

util

math

text

applet

awt

rmi

access.

security

swing

sql

corba

beans

soundnaming

JVM

Operating System

Java Bytecode Compiler Java Debugger

Java IDE

JRE

JDK

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 76

2.4.2 - J2SE Standard Extensions
• Some extra functionality is available in the J2SE

as extensions:
– Java Communications API (COMM)
– JavaBeans Activation Framework (JAF)
– Java Naming and Directory Interface (JNDI)
– JavaMail
– InfoBus
– Java 3D

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 77

2.4.2 - J2SE Standard Extensions
(cont.)

– Java Media Framework (JMF)
– Java Advanced Imaging (JAI)
– Java Servlet
– Java Cryptography (JCE)
– Java Help
– RMI-IIOP
– Java Authentication and Authorization Service

(JAAS)
– Java Secure Socket Extension.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 78

2.4.3 - Java 2 Enterprise Edition (J2EE)
• J2SE augmented with the following J2SE

optional packages:
– Enterprise JavaBeans, Java Naming and

Directory Interface (JNDI), Servlets,
JavaServer Pages, JDBC data access API,
Java Messaging Service (JMS), Java
Transaction API (JTA) and Java Transaction
Service (JTS), RMI over IIOP, and JavaMail.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 79

2.4.4 - JavaCard
• Java environment for smart cards:

– Ex: 1K RAM, 16K EEPROM, 24K ROM
• Split functionality: class loading, bytecode

verification, resolution and linking, and
optimization are done off-card.

• Uses the JavaCard VM (JCVM) and JavaCard
specific runtime (JCRE).

• No floats, strings, GC, threads, etc.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 80

2.4.5 - Embedded Java
• API is application-specific.

– Implies static environment (no applets!)
• Collection of tools and technologies to make it

work:
– JavaFilter and JavaCodeCompact collectively

do dead-code (and dead-data) stripping.
– JavaDataCompact statically loads any data

into the executable.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 81

2.4.6 - Personal Java
• Targets networked appliances with GUIs.
• Specifies:

– Full support for the JVM and the language.
– JDK 1.1.8 packages: applet, beans, text
– Modified versions of: awt, io, lang (1.2), net,

security (1.2), util.
– Optional: math, rmi, sql.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 82

2.4.7 - Real-Time Java
• Only preliminary specification published.
• Still awaiting implementation.
• Discussed in detail in section 4.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 83

3 - Java And Embedded Systems
• Java is well suited to implement embedded

systems.
Supports scalability.
Supports portability.
Supports effective code reuse.
Supports concurrency.
Supports dynamic class loading.
Supports other languages.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 84

3.1 - Supports Scalability
• Java is suitable for small scale single processor

systems to large multiprocessor and distributed
systems.
– Various implementations and standards.

• Bytecode interpreters trade speed for
compact code storage.

• Off-line and JIT compilers trade offer better
performance.

– Rich set of APIs.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 85

3.2 - Supports Portability
• System portability through standardization.

– Programming language.
– Runtime environment.
– Standard APIs.

• Binary (bytecode) portability.
– Define a single processor architecture.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 86

3.3 - Supports Effective Code Reuse
• Java interfaces to a wide variety of system

services through standard APIs.
• Leverage components and polymorphism

(inheritance) to increase code reuse.
• Help protect investment in code development.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 87

3.4 - Supports Concurrency
• Multithreading built into the specification.

– Supported in all standards except JavaCard.
• Possibly the widest variety of IPC mechanisms

of all standardized operating environments.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 88

3.5 - Supports Dynamic Class Loading
• Can extend systems at runtime.
• Can upgrade systems in the field.
• Requires a bytecode interpreter or JIT.
• Cannot easily work with off-line compilation.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 89

3.6 - Supports Other Languages
• Integrate legacy code by:

– Recompiling it to bytecode.
– Use JNI or other native interfaces to call

machine code.
• Legacy code can call into Java also.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 90

3.7 - Easy Workarounds For Shortcomings
• Lack of pointers requires that device register

access be delegated to native code.
– Assembly or C/C++ code.
– Called through JNI or other native interface.

• Encapsulation of devices still possible with
native methods.

• Possible to write device drivers mostly in Java.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 91

4 - Java And Real-Time Systems
• Java specification does not support real-time

computing.
• Java specification does not preclude real-time

computing.
• Need for standards.
• The Real-Time Specification for Java.
• What is missing.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 92

4.1 - Java Does Not Support Real-Time
• Imprecise scheduling semantics.
• Timing uncertainties introduced by garbage

collection.
• Lack of direct memory access mechanisms.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 93

4.1.1 - Imprecise Scheduling Semantics
• Much about thread scheduling is implementation

defined.
• Only 10 levels of priorities.

– No requirement for preemption.
– Priorities may be ignored!

• No indication of queueing rules for threads on
monitors.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 94

4.1.2 - GC Timing Uncertainties
• Garbage collection can introduce timing

uncertainties.
– Simple mark-sweep or compacting collectors

stop all computations while they run.
– Garbage collection is essentially an

unbounded operation (too complex to predict
how long it will take).

– Introduces unbounded latencies in responses
to events.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 95

4.1.3 - Lack Of Direct Memory Access
• Really an embedded system issue.

– Needed in many real-time systems.
• Can only access specific memory locations

through native code.
• JNI is not particularly efficient.
• No standard classes.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 96

4.2 - Java Does Not Preclude Real-Time
• Java specifications do not preclude real-time

computing.
– Specification allows real-time scheduling.
– Work around garbage collection.
– Add classes and implementations to support

real-time computing.
• Solutions are not portable.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 97

4.2.1 - Real-Time Scheduling
• Preemptive fixed priority scheduling is allowed

by the standard.
• Possibly extend the number of priority levels.
• Implement priority inheritance or priority ceiling

protocols for condition variables.
• Bound the execution times of selected methods.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 98

4.2.2 - Garbage Collection
• No specific garbage collection technique

mandated.
• Do not allocate memory during real-time

responses
– Will not trigger garbage collection cycle.
– May be too draconian.

• Run garbage collector at a lower priority than
real-time threads.

• Move collectable objects atomically, if at all.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 99

4.2.3 - Provide Implementations
• Define required functionality to support real-time

applications.
– Examples:

• Classes to access memory.
• Explicit schedulers.

• Re-implement selected methods in Java APIs.
– Execute in bounded time.
– Do not trigger the garbage collector.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 100

4.3 - Need For Standards
• Danger in creating multiple incompatible

implementations of real-time Java.
– Fragmentation leads to lack of portability.

• Sun Microsystems defined the Real-Time
Specification for Java (RTSJ).
– Set of standard APIs.
– Minimum implementation.
– Allows for implementation-specific

extensions.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 101

4.4 - Real-Time Specification For Java
• RTSJ adds required and optional functionality to

any Java Platform to support real-time.
• Draft specification released 2000-02-08.

– As response to International J Consortium
Specification: Real-Time Core Extensions for
the Java Platform?

• Preliminary specification released June 2000.
• Final specification awaits reference

implementation.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 102

4.4.1 - Goals Of RTSJ
• Provide for predictable execution.

– No guarantee, but allow for it.
• Maintain backward compatibility.

– Support non-real-time Java programs
• Maintain WORA — “Write Once Run Anywhere”.

– Does not apply to scheduling or platform-
specific extensions.

– WOCRAC — “Write Once Carefully, Run
Anywhere Conditionally”.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 103

4.4.1 -Goals Of RTSJ
• Support current practice and allow for future

extensions.
– Support RMA and possibly on-line scheduling.

• No changes to syntax.
– No need to change bytecode compilers.

• Separate APIs from implementation.
– Allow for different implementation tradeoffs.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 104

4.4.2 RTSJ Enhancements
• Scheduling and dispatching.
• Monitor access scheduling.
• Wait-free message queues.
• Raw memory access.
• Memory management.
• Real-time threads.
• Asynchronous event handling.
• Asynchronous transfer of control.
• Asynchronous thread termination.
• Other features.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 105

4.4.3 - Scheduling And Dispatching
• Scheduler API supports on-line scheduling.
–SchedulingParameters determine execution

eligibility.
–ReleaseParameters used for:

• Scheduling feasibility analysis.
• Admission control of new real-time threads.

• Application can subclass Scheduler.
– Possible to change default scheduler.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 106

4.4.3.1 - Scheduling And Dispatching
• New Schedulable interface.
• New classes that implement Schedulable

interface: RealTimeThread,
NoHeapRealTimeThread, AsyncEventHandler.

• Instances that implement Schedulable hold
references to a managing Scheduler object.
– Can have multiple schedulers.

• I don’t see how one could use multiple
schedulers, even cooperating ones.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 107

4.4.3.2 - SchedulingParameters
• Class representing execution eligibility.

– Dispatcher selects most eligible ready to run
thread for execution.

• Must be subclassed when values are provided.
–PriorityParameters.

• Holds fixed priority determined by RMA.
–ImportanceParameters.

• Select among equal priority threads during
overload conditions.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 108

4.4.3.3 - ReleaseParameters
• Class representing deadline and cost (expected

execution time).
• Used for on-line scheduling feasibility analysis

and admission control.
–Scheduler.addToFeasibility()

–Scheduler.isFeasible()

•AsyncEventHandlers may be invoked when
threads exceed their execution time or deadline.
– Not required in basic implementation.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 109

4.4.3.3 - ReleaseParameters
• Predefined subclasses:
–PeriodicParameters

• Specifies period, cost and deadline.
–AperiodicParameters

• Specifies cost and deadline.
–SporadicParameters

• Specifies minimum interarrival time, cost
and deadline.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 110

4.4.3.4 - PriorityScheduler
• All implementations must provide a fixed

preemptive priority scheduler.
– Instance of class PriorityScheduler.
– Minimum of 28 distinct real-time priorities.

• Co-exist with the 10 non-real-time levels.
– Larger values represent higher priorities.
– Ignores release parameters, i.e. no on-line

scheduling analysis or admission control.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 111

4.4.3.5 - Default Scheduler
•Schedulable objects reference the global
PriorityScheduler by default.

• Specific scheduler may be specified when
instances that implement Schedulable are
created.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 112

4.4.3.6 - ProcessingGroup
• Holds scheduling information about groups of

aperiodic or sporadic Schedulable instances.
• Scheduler can analyze the entire group for

scheduling feasibility.
• Scheduler can enforce scheduling policy on

entire group.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 113

4.4.4 - Monitor Access Scheduling
• Instances of MonitorControl set scheduling

policy for monitors globally or per-monitor.
•PriorityInheritance protocol is mandatory.
•PriorityCeilingEmulation protocol is

optional.
• Threads are required to queue in priority order

on monitors.
• Equal priority threads queue in FIFO order.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 114

4.4.5 Wait-Free Message Queues
• Provides object queues for communication

between real-time and non-real-time Java.
– Non-blocking write on full queue.
– Program-selected fixed-size.

• Reader may block on empty queue.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 115

4.4.6 - RawMemoryAccess
• Instances of RawMemoryAccess class represent

contiguous sequence of bytes starting at some
specified address.

•Get<type> and set<type> methods are
provided for type safe access to raw memory.

• Useful to access memory mapped device
registers.

•RealtimeSystem.BYTE_ORDER boolean
indicates endianess of underlying platform.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 116

4.4.6 - RawMemoryAccess
• Cannot contain Java objects.

– Would expose internal implementation and
break type safety and encapsulation.

• Physical memory regions are typed.
– ALIGNED, BYTESWAP, DMA, SHARED.

• Supports virtual memory mapping when
supported by the underlying platform.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 117

4.4.7 - Memory Management
• Supports allocation of objects outside of the

garbage collected Java heap:
–ScopedMemory.
–ImmortalMemory.

• May be mapped into specific physical memory
regions with specific attributes.
– ALIGNED, BYTESWAP, DMA, SHARED.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 118

4.4.7.1 - ScopedMemory
• Object lifetime linked to code blocks.
–ScopedMemory.enter(<method>)

• All objects in a scope become garbage when all
blocks using the scope have exited.

• Requires support from the JVM:
– No assignment from inner to outer scope.
– No assignment from scoped to heap or

immortal.
• Original intent: fixed cost allocation on stack.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 119

4.4.7.2 - ImmortalMemory
• Object lifetime controlled by program logic.
• May have multiple immortal memory regions?
• Immortal memory is not garbage collected.
• Immortal memory is scanned for references to

objects in garbage collected heap.
• Objects in immortal memory are reclaimed and

finalized at program exit.
• No way to free blocks at runtime.
• Singleton ImmortalMemory.instance()

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 120

4.4.7.3 - Allocation Time
• Support for 2 types of memory managers:

– Scoped LTMemory provides allocation time
linear with the size of the blocks.
• Preliminary specs has CTMemory examples.
• Constant time is now linear time?

– Scoped VTMemory provides variable
(unpredictable) allocation time.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 121

4.4.7.4 - MemoryParameters
•MemoryParameters associated with threads.
• Can limit the consumption of memory by a

thread.
– In bytes.

• Can control the rate of allocation of a thread.
– In bytes per second.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 122

4.4.8 - RealtimeThread
• New class that extends java.lang.Thread.
• Instances of NoHeapRealtimeThread subclass

cannot allocate from or reference objects in the
Java heap.

• Instances of RealtimeThread can preempt the
garbage collector at safe points
– Safe points determined by the collector.

• Instance of NoHeapRealtimeThread can
preempt the garbage collector instantly.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 123

4.4.8 - RealtimeThread
• Some new functionality can only be accessed by

instances of this class:
– Memory allocation in ScopedMemory.
– Asynchronous transfer of control.
– Interruption of the garbage collector.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 124

4.4.9 - Asynchronous Event Handling
• Instances of AsyncEvent represent events.

– External event: interrupt or signal.
– Internal event: explicitly created instance.

• Instances of subclasses of AsyncEventHandler
are bound to threads.
– Automatically bound on each activation.
– Explicitly bound to a specific thread.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 125

4.4.9 - Asynchronous Event Handling
•AsyncEventHandlers stored on list in
AsyncEvents.

• Multiple AsyncEventHandlers per AsyncEvent.
• Same AsyncEventHandler may be installed in

multiple AsyncEvents.
• Call to AsyncEvent.fire() from program, ISR

or ASR causes the handlers installed for the
AsyncEvent to run at their specified priority.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 126

4.4.10 - Asynchronous Transfer Of Control
• Requires the declaration of the
AsynchronouslyInterruptedException (AIE)
in the throw clause of a method.

• Activated by calling the interrupt() method of
a real-time thread.

• Like a Unix signal, but uses Java exception
mechanism.

• Requires support from the compiler and JVM.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 127

4.4.11 - Asynchronous Thread Termination
• No explicit mechanism.

– Relies on asynchronous event handling and
asynchronous transfer of control.

• Blocking I/O operations are made interruptible.
• Use thread-specific cleanup asynchronous event

handlers and asynchronous exception handlers
to release resources.

• RTSJ is very vague on this topic.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 128

4.4.12 - Other Features
• Time reporting and computing methods.
• Timers.
• Real-time system interface.
• Support for POSIX signals.
• New exceptions.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 129

4.4.12.1 - Time Representations
•HighResolutionTime abstract class represents

time with nanosecond resolution.
• Methods provided to operate on this new type.
•AbsoluteTime class represents Unix time

(relative to 0:00 on 1 January 1970 UCT).
•RelativeTime class represents time relative to

some other starting point.
•RationalTime class represents number of

occurrences in some period.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 130

4.4.12.2 - Timers
•PeriodicTimer fires AsyncEvents periodically.
• OneShotTimer fires one AsyncEvent at

– Specified AbsoluteTime.
– Specified RelativeTime after timer creation.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 131

4.4.12.3 - RealtimeSystem
• Interface for the overall system.

– Byte ordering.
– Return reference to garbage collector.
– Return reference to security manager.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 132

4.4.12.4 - Support POSIX Signals
•POSIXSignalHandler class converts incoming

POSIX signals to AsyncEvents.
• Not required.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 133

4.5 What Is Missing
• Actual implementation!

– Many working on reference implementation.
– IBM working on conformance test suite?
– Expected mid 2001.
– Requires changes to Java Class Libraries.

• Should provide bounded and documented
execution times.

• Extensive changes to java.io

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 134

4.5 What Is Missing
• Clarifications.

– Are multiple ImmortalMemory regions
allowed?

– Examples of asynchronous thread
termination.

– Synchronization of real-time and non-real-time
threads.

– List of classes or methods required to support
bounded execution times.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 135

5 - Conclusion
• Reviewed the current state of real-time and

embedded systems.
• Gave an overview of Java technologies.
• Showed that Java is suited for non-real-time

embedded systems.
• Described in some detail new APIs and

semantics of the Real-Time Specification for
Java.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 136

5 - Conclusion
• Real-Time Specification for Java designed to

support emerging technologies and approaches.
• May be applied to all Java standards except

JavaCard.
• Can be coupled with Jini for highly powerful and

flexible distributed real-time and embedded
systems.

• All we need are implementations and tools.
• Maybe next year...

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 137

5 - Conclusion
• Deliberately ignored PERC.

– Another real-time standard.
– J-Consortium.
– Not supported by Sun.

• Can it win?
• Will vendors support it?

• Deliberately ignored new Distributed Real-Time
Specification for Java (DRTSJ).

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 138

6 - References
• Mark H. Klein et al, A Practitioner’s Handbook for

Real-Time Analysis: Guide to Rate Monotonic
Analysis for Real-Time Systems. Kluwer
Academic Publishers, 1993.

• Greg Bollella et al, Real-Time Specification For
Java, Addison-Wesley, 2000.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 139

Appendix A - Multitasking
• Many real-time and embedded systems handle

more than one type of event.
• More flexible design if each event response

implemented as a task (sequence of operations).
• There are several ways of achieving this.

– Cyclic executive.
– Concurrent systems.

• Generally, tasks will have to cooperate.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 140

A.1 - Cyclic Executive
• Program consists of a main loop with several

internal paths.
• Each path through the loop performs a specific

task.
• After n iterations through the loop, the pattern

repeats.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 141

A.1 - Cyclic Executive (cont.)
• Works only when events occur periodically and

periods are multiples of some period P.
– Ex: Task1 triggered every P, Task2 every 3P,

etc.
– Aperiodic events can be treated periodically.

• Cyclic executive is easy to program, but
inflexible: the schedule is built right into the
program.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 142

A.1 - Cyclic Executive (cont.)

Task 1 Task 2 Task n...

wait
ith iteration mod n == 0

Task 1

Task 3

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 143

A.2 - Concurrent Systems
• Occurrence of event triggers matching response.
• Provide apparent or true concurrent execution of

multiple responses by managing their contexts.
• Three main types:

– Multiprocess systems.
– Multithreaded systems.
– Multitasking systems.

• Concurrent systems may execute on
uniprocessors or multiprocessors.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 144

A.2.1 - Context
• Values representing the state of a computation.
• Values are stored:

– Machine registers (includes program counter).
– Program stack.
– Heap (dynamically allocated data).
– Data section (initialized global variables).
– Bss section (uninitialized global variables).

• Heap, data and bss context may be shared.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 145

A.2.1 - Context

code

data & bss
heapthread control blocks

process

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 146

A.2.2 - Multiprocess Systems
• Concurrent execution of multiple processes.
• Processes are running programs.
• Each process has its own memory space.

– Context not shared with other processes.
– May contain multiple threads.

• Process usually owns resources that are
reclaimed when process terminates.

• Example: programs running under Unix and
Windows NT.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 147

A.2.3 - Multithreaded System
• Concurrent execution of multiple threads.
• Threads are running programs.
• Threads share their memory space.

– Share bss, data and heap.
– Do not share stack, machine registers.

• Threads usually do not own resources.
• Examples: Running programs in many

embedded and real-time systems and POSIX
threads (pthreads).

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 148

A.2.4 - Multitasking System
• No standard definition.
• Task may be a process or a thread.
• May be something in between, e.g. thread that

owns resources.
• Multitasking used in this tutorial to designate

any concurrent system.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 149

A.2.5 - Uniprocessing
• Computing on uniprocessors: systems with a

single general purpose processor.
• Concurrent execution on the general purpose

processor can only be apparent:
– Multiplex the processor between the tasks.
– Requires scheduling, dispatching and context

switching.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 150

A.2.6 - Multiprocessing
• Computing on multiprocessors: systems with

two or more general purpose processors.
– Symmetric multiprocessing.
– Asymmetric multiprocessing.

• Concurrent execution on the general purpose
processors can be both apparent and real.

• In real-time systems, bind tasks to processors to
avoid scheduling problems.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 151

A.2.6.1 - Symmetric Multiprocessing
• All processors in a symmetric multiprocessor

(SMP) have the same instruction set.
– Usually same clock rate.
– Usually share memory.

• Tasks can run on any processor, at least in
principle.

• Often a single RTOS controls all processors.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 152

A.2.6.2 - Asymmetric Multiprocessing
• Processors in an asymmetric multiprocessor are

not all identical.
– Different instruction sets.
– Different capabilities, e.g. I/O devices.

• Tasks written to exploit the capabilities of
specific processors.

• May require multiple independent RTOSes.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 153

A.2.7 - Modern Uniprocessors
• Most are really asymmetric multiprocessors.

– Equipped with “intelligent” I/O processors that
run programs written in different machine
code than the main processor.

• Must be programmed, at some level, as
cooperating multiprocessor systems.
– RTOS and its drivers may hide the I/O

coprocessors.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 154

A.3 - Cooperating Tasks
• In general, tasks cooperate.

– If only to coordinate access to I/O devices.
– Typically, tasks communicate to exchange

data and coordinate their execution.
• Communication and synchronization are

collectively known as Interprocess
Communication (IPC), even for threads and
tasks.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 155

Appendix B - Review Of IPC Mechanisms
B.1 Shared variable IPC.

B.1.1 Shared variable IPC mechanisms.
B.2 Message passing IPC.

B.2.1 Message passing IPC mechanisms.
B.2.2 Remote procedure calls.

B.3 Transactions
B.4 Generative Memory

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 156

B.1 - Shared Variable IPC
• Used mostly in multithreaded systems.
• Named variables are shared and used for

communication.
• Requires some synchronization mechanisms to

control access to the shared data.
– Access to shared data occurs in critical

sections.
– Most synchronization mechanisms implement

ownership protocols.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 157

B.1 - Shared Variable IPC (cont.)
Task T1 {
lock (x);
x = x + 1;
unlock (x);

}

Task T2 {
lock (x);
x = x * 2;
unlock (x);

}

• Variable x accessed by name in shared memory.
•T1 and T2 obtain ownership of variable x before

accessing it.
• Variable x accessed in critical sections delimited

by lock() and unlock() calls.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 158

B.1.1 - Shared Variable Mechanisms

• Many different mechanisms have been invented.
– Spin locks (test-and-set, fetch-and-add, etc.)
– Mutexes and condition variables (POSIX).
– Semaphores.
– Monitors (Java).

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 159

B.2 - Message Passing IPC
• Data is explicitly passed between tasks in

discrete bundles called messages.
• Sender initiates a transfer of data (producer).
• Receiver accepts the data (consumer).
• Message passing does not require:

– Physical shared memory.
– Shared namespace (as with shared variables).

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 160

B.2.1 - Message Passing Mechanisms

• Tremendous variety based on specific decisions
on the following choices:
– Direct or indirect.
– Synchronous or asynchronous.
– Channel capacity.
– Pair-wise or multiway communication.
– Fixed size or variable size messages.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 161

B.2.1 - Message Passing Mechanisms
• Sender must identify the receiver or message

queue.
• Synchronous message passing combines

communication with synchronization.
• Some forms allow for flexible system designs, at

the cost of some overhead.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 162

B.2.2 - Remote Procedure Calls
• Message passing looks like procedure or

method calls.
– Examples: Ada task entry calls, Java Remote

Method Invocation, Sun RPC.
• Remote call implemented as a message send.

– Actual parameters are marshalled into the
message and sent to the remote procedure.

– Reverse operation done in the remote
procedure.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 163

B.3 Transactions
• Used mostly in databases.
• Sequence of operations (read and write) on

shared aggregated data
• Executes as a single operation.
• Allows for transparency of:

– Location of objects.
– Replication of objects.
– Concurrency of operations.
– Failure of operations.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 164

B.3 Transactions
• Implemented using:

– Transaction Manager (TM) to supervise each
transaction.

– Object Manager (OM) to operate on the
(replicated) data on behalf of TM.

– Hierarchical locking and caching.
• Combines communication with synchronization.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 165

B.4 Generative Memory
• Objects to be shared are placed in a space.
• Reading an object from the space can copy or

consumes it.
• Objects are selected for consumption using

templates.
– Readers can wait for objects with specific

values in selected fields.
• Combines communication with synchronization.
• Highly flexible approach; sender need not

identify the receiver.
Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 166

Appendix C - Acronyms
• ASR: Asynchronous Service Routine.

– Code executed in response to a signal.
• API: Application Programming Interface

– The set of data types, constants, variables and
methods offered by a package for use by an
application.

• DLL: Dynamically Linked Library.
– Library linked at program load time.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 167

Appendix C - Acronyms
• GC: Garbage Collection

– Automatic reclamation of memory blocks
allocated in a heap.

• ISR: Interrupt Service Routine
– Non- thread code executed in response to an

interrupt.
• JVM: Java Virtual Machine

– Emulated Java processor and runtime
environment, without the class libraries.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 168

Appendix C - Acronyms
• OO: Object-Oriented

– A modern programming paradigm based on
data encapsulation.

• RMA: Rate Monotonic Analysis
– Current scheduling theory.

• RTSJ: Real-Time Specification for Java
– Real-time Java specification from Sun

Microsystems Inc.

Copyright © 2001, National Research Council Canada Charles-Antoine Gauthier - 169

Appendix C - Acronyms
• RTOS: Real-time operating system.

– Software in direct control of the hardware.

